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THEORETICAL ANALYSIS OF THE STATIC GENERAL INSTABILITY 
OF AN ORTHOTROPIC CIRCULAR CYLINDER 

SUBJECTED TO A N  AXIAL LOAD, END MOMENT, AND UNIFORM RADIAL PRESSURE 

by 

+ 
William S. Vial1 

i-t 
Carl C. Steyer 

1. SCOPE 

This  analysis obtains numerical results using a digital computer progmm for *e 

geneml instability eigenvalue problem that i s  presented for the dependent buckling load 

condition at  any combination of the independent loading and geometry. It i s  not intended 

that this analysis be experimentally verified as a part of this investigation. 

II. INTRODUCTION 

Missile tank design i s  subjected to two design criteria; the material strength for a l l  

possible maximum load conditions, and the structurnl stability at these possible maximum 

load conditions as well as intermediate loads. The analysis of this report i s  limited to the 

stability criteria of missile design. 

A missile tank i s  loaded with different combinations of axial load, end moment, 

and mdial pressure. The axial load, either compressive or tensile, i s  a constant force per 

unit cross-sectional area and i s  colinear with the generating element of the tank. The end 

moment i s  a varying force per unit cross-sectional area and i s  colinear with the genernting 

element of the tank. This force varies linearly with the distance between a diameter that i s  

normal to the plane of the moment, and the element of cross-sectional area. The rndial 

pressure i s  internal or external, depending upon the sign given to the pressure difference. 

The positive directions of axial load, end moment, and rndial pressure are as shown 

in  Figure 2 and are chosen to induce tension on the element of the tank at the origin of the 

axes, Figure 1. 

+ Research Assistant, Univenity of Alabama Research Institute 
* Professor of Engineering Mechanics, University of Alabama, Huntsville, Alabama 
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Functions performed by missile tank require that they be stiffened axially and cir- 

cumferentially with internal baffles, internal and external stiffeners, bulkheads, etc. 

These baffles and stiffenen are integral parts of the missile tank and i t  becomes possible to 

analyze the tank as an orthotropic circular cylindrical shell. The orthotropic circular 

cylindrical shell i s  called circular shell or shell i n  the remainder of t h i s  report. 

The loads applied to the shell are not functions of time, therefore, the investigation 

i s  limited to the static case, and the dynamic case i s  neglected. 

The technique used in  t h i s  investigation of the cylindrical shell parallels the work 

of Bodner (1)*, in that the general instability differential equation of equilibrium developed 

is  a Donnell type differential equation and i s  obtained by the application of variational 

methods to the expression for total change in  energy during buckling. 

Results can be obtained from the Donnell Type differential equation by any one of 

severnl different methods: Ritz Method, Fourier Series Method, Galerkin Method, Method 

of Frobenius, etc.; a l l  of which wi l l  yield a satisfactory solution. The Ritz Method i s  used 

in  t h i s  investigation. The results obtained by the Ritz Method are as accurate as the assumed 

deflection expression and the solution becomes an exact solution when the deflection expression 

takes the form of an infinite Fourier series. The R i t z  Method i s  mathematically the simplest 

of the methods mentioned above and i t  i s  readily programmed for digital computer applica- 

tions. 

The points of stability for the total change i n  energy expression of a conservative 

system are defined by the law of minimum potential energy when the variational principal 

i s  applied to the total change in  energy. The first variation of the total change in  energy 

i s  equated to zero, thereby obtaining the intrinsic boundary conditions and the equilibrium 

equations of the system. The Donne11 Type differential equation i s  obtained by applying a 

differential operator to the equilibrium equations of the system. An assumed deflection 

expression i s  substituted into the Donnell equation and the resulting residual force equation 

i s  minimized for each of the unknown constants of the deflection expression. This minimi- 

zation yields a system of homogeneous simultaneous equations, and the stability determinant 

of these equations i s  solved for the independent variable. 

*Indicates reference number - see Appendix B. 
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The law of minimum potential energy requires that the second variation of the total 

change in energy expression of the system be positive for the points of stable equilibrium 

and negative for points of unstable equilibrium. The second variation i s  not performed due 

to the anticipated difficulty of the mathematics, and the minimum positive value of the 

independent variable i s  assumed as the point of stable equilibrium. 

Experimental evidence obtained by Harris, Suer, Skene and Benjamin (2) indicates 

that isotropic circular shell test specimens subjected to axial load with and without mdial 

pressure fai l  somewhere between the stable and unstable equilibrium points and that the 

failure point i s  primarily dependent upon the quality of the specimen. The almost perfect 

specimens fail at the point approaching the point of unstable equilibrium. As the imper- 

fections of  the specimens become larger or more numerous the specimen f a i l s  a t  a point 

closer to the point of stable equilibrium. Theories developed for unpressurized cylinders 

with axial loads by von Kdrmdn and Tsien (3), Leggett and Jones (4), and Tsien (5) using 

the large deflection theory have attempted to expiain the deviation between iheoreilcal 

and experimental results. These theories are still considered as inadequate since their re- 

sults cannot be readily adapted as design criteria. A similar approach was used for pres- 

surized cylinders with axial loads by Donnell and Wan (6) with more success, but a deviation 

s t i l l  exists. 

Small deflection theory of shell analysis states that a l l  terms greater than second 

degree in  the total change in  energy expression may be neglected. The small deflection 

theory i s  used in  this investigution and allows the development of the Donnell Type linear 

differential equation which can be readily solved for a certain particular type of loading. 

That the small deflection theory i s  applicable to certain shell configurations i s  questioned 

by some investigators as indicated above. The answer to this question i s  le f t  for hurther 

analytical work associated with the experimental evaluation of this investigation. 

The classical small deflection theory for isotropic shell stability i s  limited to the 

range R/h-values** less than 200. Some missile tanks have R/h-values of 1000 and there 

have been indications that this value may reach 2000. Th is  indicates that the R/h-values 

for orthotropic shells that represent stiffened shells should be modified, or the valid range 

** 
See Appendix A for list of symbols and definitions. 
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o f  the theory extended for orthotropic shells. Arguments for a modification of R/h-values 

using a modified h-value, which we w i l l  call (h 

stability criterion on the bending rigidity of the shell. Similar arguments are used for the 

extensional stiffness. Suggested values for (h ) are: 

), are based on the dependence of the 
eq 

eq 

h =(12 I ) 1/3 
eq eq 

where I is  the composite moment of inertia of the shell plus stiffenen; 
eq 

where I 

ferential directions, respectively; or h = f(r), where r i s  the mdiusof gyration of a 

unit element of h e  orthotropic shell. It i s  believed that i f  the shell i s  analyzed with 

FY4 

and I are the equivalent composite moments of inertia i n  the axial and circum- 
xx ss 

eq 

= 200 the SEW!! def!ection theory wi l l  be applicable. 
eq 

Investigation is being conducted (7) which may allow the proper selection of an 

R/h-value for orthotropic shells with an h 

for orthotropic shells i s  left for experimental evaluation and/or results of investigations in 

-value. Again h e  question of an R/h 
eq eq 

-value 

progress . 
> 

For short cylinders (R = L) the assumed deflection expression, Equation 26, reduces 

to the Euler column expression when the cylinder i s  simply supported, i f  the circumferential 

deflection terms become constant. For long cylinders (R = q 3 )  the buckling becomes 

independent of the boundary conditions. In these ranges this analysis i s  valid for values 

of 

verified. 

< 

< <  
TI R/L, but the intermediate mnge (L= R = Y3) the results should abain be experimentally 

111. ASSUMPTIONS 

The following assumptions are made in  this analysis of'circular shells. 

1. The shell i s  composed of linearly elastic material. 

2. The stiffenen and baffles are integml parts of the shell, thus creating an ortho- 

tropic shell, and the unstiffened and unbaffled shell reduces to the isotropic case. 

3 .  The shell stresses i n  the unbuckled but stressed state are determined by elemen- 

tary beam theory. 
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4. The stmin equations, Equation 1 , are similar to those used by Bodner (1) except 

for certain second degree terms. The second degree terms are included in  th is  analysis 

since their effect although unknown, i s  considered significant. The last term on the right 

hand side of the e 

values of k equal to one and zero, the effect of this term on the final results can be 

determined. 

5. The work in  the circumferential direction i s  neglected i n  the determination of 

equation, Equation 1, includes a non-dimensional constant k. With ss 

the total change in  energy expression. T h i s  i s  based on the symmetry of both of the 

stresses and the cylindrical shell geometry. 

u ss 

6. The pre-buckling deformation discussed by Donnell and Wan (6) and Stein (8) are 

neglected. The effect of these deformations should be investigated during experimental 

verification. 

7. In the development of the Donne11 equation, a l l  terms above the second order 

:- AL- r-r-1 ---VI.. -.*-----:A- --a ,-J:e-mvAa,-J kla-le-t:-,-, tLa + o m c  n h n s r n  c n r n n A  nr&r Ill I l l C  IUIUI GIlGIy~ G A ~ l G a a l u I I  "Ib U1aC"IU"u. I .b~rnb"#, , ,~  I,," . C . . S , . #  -"".I .#--...." ". 
simplifies the mathematics and insures a small deflection theory approach to the analysis. 

8. Localized or panel instability is  neglected i n  this analysis and only the general 

instability of the shell i s  investigated. 

9. The assumed deflection expression, Equation 26, contains only 6 circumferen- 

tial terns, but can be extended to any number desired. The use of six terns requires that 

a cubic equation be solved and this solution can easily be programmed. Additional terms 

in  the deflection expression would complicate the computer progrum and possibly produce 

a computer overload. The axial term in the deflection expression contair a nondimen- 

sional constant m which i s  used to obtain any number of buckling modes. 
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IV. CYLINDRICAL SHELL GEOMETRY AND STRESS-STRAIN RELATIONS 

Fig. I: Coordinate System ana Dispiacemenis of ihe Circular Cyiindricai Shell. 

The coordinate system and corresponding middle-surface displacements for the 
I 

circular cylindrical shell are shown in Figure 1. 

The expressions used for the buckling strains in the shell wall; written in terms of 

the shell middle-surface displacements, u, v, and w; are the same as those given in Reference 

I (1) with some additional terms, and are written as follows: 

2 
e =u, +(1/2) w , x -  z w, 
xx X xx 

2 
e = v, - (w/R) + (1/2)(w, + v/R) - Z ( W , ~ ~  + kw/R2) ss S S 

where e , e , and e , are the axial, circumferential, and shear strains, respectively, 

that occur during the buckling process; R i s  the radius of the cylinder; and k i s  a nondimens- 

ional constant. When the subscript or subscripts associated with the middle-surface 

displacements are preceeded by a comma, they denote differentiation with respect to the 

indicated succeeding coordinate vari ab les . 

xx ss xs 

The stress-strain relationships for a homogenous orthotropic mnterial in  generalized 
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plane stress, as given by Reference (l), can be written as follows: 

u xx = E  x (e xx + IJSX e 55 )/(1 - Psx tJx3 

u = G e  
xs xs 

where u and u are the axial, circumferential, and shear stresses, respectively; 

E and E are the moduli of elasticity averaged over the shell thickness in  the axial and 

circumferential directions, respectively; G i s  the average shear modulus; and p and p 

are Poisson's ratios from the x to the s and s to the x directions, respectively. 

xx' 9 s  xs' 

X S 

xs sx 

For convenience in  later calculations certain constants, similar to those given in  

Reference (1 ), are introduced and are written as follows: 

= E  h /2(1 - p p ) al X xs sx 

= E h/2(1 - p p ) 02 S xs sx 

D1 = E h3/24(1 - p p ) 
X xs sx 

D2 = E h3/24(1 - IJ p ) 
xs sx S 

D3 = Gh3/96 

where h i s  the shell thickness; the a's correspond to the extensional stiffness of the shell; 

and the D's correspond to the bending rigidity of the shell. 

The following relationship between the elastic constants, based on Maxwell's 

reciprocal theorem, i s  noted for later use. 

= E  p 
ES IJXS x sx 
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V. CYLINDRICAL SHELL LOADING AND STRESS RESULTANTS 

Fig. 2: Loading of the Circular Cyiindricai Shell 

The positive shell loads po, Po, and M are shown with respect to the coordinate 
0 

system; where p i s  the uniform radial pressure, P i s  the resultant axial load, and M 

i s  the resultant end moment. The positive loads are directed in  order that positive stresses 

(tensil) are induced at the origin of the coordinate system. 

The following stress resultants are defined: 

0 0 0 

where N , K , and K 
the shell wall, respectively, prior to buckling; and u u and are the axial, 

circumferential, and shear stresses in the shell wall, respectively, prior to buckling. In 

general the barred symbols indicate stresses, strains, and stress resultants in the shell prior 

to buckling, while un-barred symbols indicate stresses and strains that occur in  the shell 

are the axial, circumferential, and shear stress resultants in  
- - xx ss xs 

XX,  55, xs 

during the buckling process. 

According to elementary beam and shell 

following stresses in  the shell wall. 

heory, the shell loading wi l l  induce the 
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n n L 
where M = M  /mR and P = P /m RL. a 0 a 0  

Substituting Equation (6) into Equation (5) and integrating over the shell thickness 

the stress resultants become: 

- 
N =poR ss 

- 
N = M cos (s/R) + (R/2)(p +Pa) 

xx a 0 

VI. S T R A I N  ENERGY, POTENTIAL ENERGY, TOTAL CHANGE IN ENERGY, AND 
VARIATION IN TOTAL CHANGE IN ENERGY EXPRESSIONS. 

~~~ ~~ 

The instability differential equations of equilibrium wi l l  be derived using a procedure 

similar to that given in  Reference (1). The criterion of buckling for an elastic system i s  

that the potential energy of the system i s  a minimum. Stated mathematically, the variation 

of the change in energy of the system due to buckling, with respect to the displacements, 

must be zero; or: 

6 (U + V ) = O  

where U i s  the change in strain energy of the shell during buckling, V i s  the change in 

potential energy of the applied loads during buckling, and 6 indicates a variation of the 

sum with respect to displacements. 

The change in the strain energy of the shell i s  given by the following expression: 

- 
U=Jv [ ( a  e + u e + '0 e ) +(1/2)(0 e + o  e + u xs e xs ) ] d V S  xx xx ss ss x5 xs xx xx 5s ss 

S - - 
where u 

unbuckled state and they are assumed to be  constant during buckling; Q xxI uss, and u xs are 

0 and '0 are the membrane stresses in the shell wa l l  in the stressed but 
XX'  SS, xs 
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the superimposed buckling stresses; e e and e are the buckling strains; and V i s  

the volume of the shell wall. 
xx‘ 5s‘ xs S 

The change in potential energy of the shell during buckling has components in the 

z and x directions and the total change in potential energy during buckling i s  given 

by the following expression: 

where A and A are the surface and cross sectional areas of the shell, respectively; and 

u i s  given by the expression u = 4 u, dx. 
S e 

X 

The total change in energy, strcin energy plus potential energy, during buckling 

i s  obtained by adding Equation (9) to Equation (10); substituting Equations ( l ) ,  (2), (4), (5), 
(6), and (7) into Equations (9) and (10); and integrating over the shell thickness. The 

expression for ioiai change in energy I s  given bji the f a ! ! ~ ~ i f i g  e-i=”;Iofi: 

+ P a [w2, X R/4] +M a cos (s/R)[w? X /2]) dA S 

+ pxsw 
#-b 
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Substituting Equation (3) into Equation (1 1) and discarding al l  third order and 

greater terms the expression for total change in energy reduces to: 

D D , and D are as defined in Equation (3). Several authors, 1' *2, a3, 1 '  2 3 where u 

including the author of Reference (1) have proven that the ommitted terms are negligible. 

The use of terms up to the second order wi l l  result in a linear differential equation. 

Applying the variational principal, 

to Equation (12), the following expression for the variation in the total change in  energy with 

respect to the displacements u, v, and w i s  obtained: 

+ {  M a x  w, cos(s/R) +(p 0 Rw,J2) +(P a x  Rw, /2)} Sw, X 
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(14 Con't .) 

Equation (14) i s  simplified further by setting dA =dxds; applying the following 
S 

dx d 
identity from calculus of variations, 6 - = -(Sx); and integrating between the l imits 

of 0 to i for ax, ana 0 i o  2rR for ds. The i inai form of ihe expression for ihe variaiion 

i n  the total change in energy of the orthotropic cylindrical shell during the buckling 

process i s  os follows: 

dY dY 
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(15 Con't.) 

VII. EQUILIBRIUM EQUATIONS AND NATURAL BOUNDARY CONDITIONS 

The variation in the total change in  energy of the system must vanish for any of 

the arbitrary virtual displacements 6u, 6v, and 6w when the system i s  in equilibrium. When 

Equation (15) i s  equated to zero the integrands of the surface integral must vanish, since 

the virtual displacements are arbitrary, and the following stability equilibrium equations 

are obtained: 
n 



[ 2 p  D +4D3]  = O  
+w,xxss sx 1 

The following natural boundary conditions are obtained from Equation (15) when 

the constant term and the integrands of the line integrals vanish for any arbitrary virtual 

displacement,and derivative of an arbitrary virtual displacement. 

= O  



Vl l l .  DEVELOPMENT OF A DONNELL TYPE DIFFERENTIAL EQUATION FOR THE 
STATIC CASE 

The stability equilibrium equations are written in the following form: 

u, = a p v + a v  + a v  + a w ,  +apw,  

v, = a u  + a u  + a w  

xs 1 4 #Xx 2 I S S  5 xxs 2 s 

xs 1 'xx 3 'SS 6 'X 

= b4w + [bp2 -M R co&/R)h.r, + bplW,SS a xx c u  + c p v  1 I X  1 ~s+c2v,xxs 

* l W k X X x  + b3W'xxSS + b2W'ssss 

where: 
- 

QPl  - Poa7 

a + a  aP2=Po 8 9 

bP, = Po bsj + b6 

bP2 = P0b7 + Pab7 + bg 

CP1 - P0C3 + c4 

a l  = -2a1/(pxs "2 +2a3) 

a2= -2a# pxs "2 + 2 a3) 

- 

and: 

a3 = -2a3/( pxs a2 + 2a3) 

a4 

a5 

2 2  
= -2(D3 + a3 R )/R ( pXsa2 + 2a3) 

= -4D3/R( pxs a2 + 2 a3) 

'6 = "2 pxiR(pxS 9 + a3) 

a7 = 1/R( pxs a2 + 2a3) 

a8= '/(pXs q + 2 a 3 )  



b2 = 2D R 
2 

b =4D Rpsx+8D3R 
3 1 

2 2 3 b = 2(R ? + k  D2)/R 4 
2 b = - R  5 

b6 = 4kDdR 

2 b7 = -R /2 

(2Oa Con't.) 

b = 4 p  kD,/R 8 sx 

- 
c1 - "2 pxs 

3 c2 = -4D 

c3 = R 

c4= 2a2 

A linear differential oDerotion i s  defined as follows: 

(21) 
a4 a4 +(a a + a  a - 1 )  22 a4 

ax4 ax as as 
- 

+a203 1 2  3 4  + a a  - a2 
1 1 ax2 3 1 as2 + a a p  - Q = a a p  - a2 

By successive differentiation and combination, Equations (1 6a) and (17a) w i l l  have 

the following form: 

Qu = - [ a  ap w, + (a2a6 + ap2) wIxss + a  a w + a  w, 1 (22a) 6 1  x 4 6 'xxx 5 xxxss 

Q = -  + a  ap wI + a  a w, + a  a w, I 
V '(alaP2+a6)W'xxs 3 2 sss 1 5 xxxxs 3 5 xxsss 

Operating on Equating (18a) with the differential operotor defined i n  Equation 

(21) results in the foilowing: 

Q(c,uIx + cp v + c v ) 1 I s  2 'xxs 

+ b3W'xxss + b2W'sSSf 
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By uti l izing Equations (22a) and (22b), a l l  the u and v terms i n  Equation (18b) 

can be eliminated. The resulting equation, an eighth order differential equation in w , 
i s  the required Donnell-type differential equation and i s  given as follows: 

h80w xxxxxxxx + h62w xxxxxxss + h44w xxxxssss + h26w xxssssss 

i- [h60+hc60 a h08w ssssssss xxxxss 
+ h42 + hcq2Mac0s(~/R) I WI xxxxxx 

M cos(s/R) 1 w, + 

xxxxs (23) 
+ h  w M sin(s/R) w, 

xxssss 06 ssssss + h~41  a + [ h24 + hc,4Macos(s/R)I wr 

M cos(s/R)hY, 
xxsss + [ h40+hc40 a xxxx + [h22+hc22 a xxss 

M cos(s/R) ] w, + h M sin(s/R) w, s23 a 

M cos(s/R) I w, + h w = 0 
xx 02 ISS 

M sin(s/R)w, 
+ [h20 + hc20 a w ~ s s s s  + hs21 a xxs 

+ 

Wh e re: 

h = d  80 80 

h62 = d62 

h = d  
26 26 

h 4 2 = d  + e  p + f  P 42 42 o 42 a 
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h = d  + 06 06 e06Po 
- 

h~41' '41 

hs23 = '23 

h40 = d4 + e40Po + g d t  + ef4p0Pa 

- 

hc40 = '40 + eg4@o 

h = d  + e  + ;22p% + ef p P 

hc22 = eg22 Po + 922 

hS21 - ='21 Po + 921 

22 22 22po 22 o a  

- 7  - 
04 '0 h = d  + e o 4 p 0 + e  04 04 

- - 

20 Po 
h20 = e 

hc20 = e'20P0 + '20 

h02 = e02P0 

and: 

= a  a b  d80 1 4 1 

= a a c  + b ( a a  + a a  - l ) + a a b  d62 1 5 2  1 1 2  3 4  1 4 3  

d44=a a c + a  a b + b  (a a + 0 3 a 4 - l ) + a  a b 
3 5 2  2 3 1  3 1 2  1 4 2  

d26=a2a3b3 + b (a a + a  a - 1) 
2 1 2  3 4  

= a  a b doa 2 3 2 

(24 Con't.) 

= a  a b  d60 1 4 a 
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= a  a b + a  a b e60 1 7 1  1 4 7  

f = a a b  60 1 4 7  

960 = - h i 0 4  

= a  c + a a  c + a a  c + a  c + b ( a a  + a 3 a 4 - 1 ) + a a  b 

= a  a c + a  a c + a  a b + a  a b + a  a b + b  ( a a  + a  a -1 )  

d42 5 1  1 5 4  1 9 2  6 2  8 1 2  1 4 6  

e42 1 5 3  1 8 2  1 4 5  3 7 1  1 7 3  7 1 2  3 4  

f42 7 1 2  3 4  
= b ( a a  + a a  - 1 )  

= -R(a a + a  a - 1) '42 1 2  3 4  

l\ 
d =sac i a a c  i a a b  + b ( a a  * f a 3 a 4 -  I )  

24 3 5 4  3 9 2  2 3 8  

e24=a  a c + a  a c + b  (a a + a 3 a 4 - l ) + a  a b + a  a b + a  a b 

f24 2 3 7 (25 Con't.) 

g24= -Ra a 2 3  

= a  a b 
d06 2 3 6 

3 5 3  3 8 2  5 1 2  3 7 3  1 7 2  2 3 7  

= a  a b  

= a  a b + a  a b  
e06 2 3 5  3 7 2  
- 
g41 = 2(a a + a  a - I) 

'23 = 4"2a3 

d40 4 6 1  1 4 4  

e40 = a l a P 8  

= a  a b  
ef40 1 7 7 

= (1/R)(ala2 + a3a4 - 1) 

1 2  3 4  
- 

= a  a c + a  a b  

40 
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e940 = - k l a 7  

- 
= a  a b e40 1 7 7 

d = a a  c + a a  c + a  c + b  (a a t a 3 a 4 - 1 ) + a  

a6C3 + a3a$B + a a b  1 7 6 

9 1  22 2 6 1  1 9 4  6 4  4 1 2  

e22 = a8Cl ala9c3 + a1a8C4 
- 

=sac + a a b  + a a b  e22 1 8 3  1 7 5  3 7 7  

ef = a a  b 
22 3 7 7  

g22 = (1/RW2a3) 

ea = a,a R '22 J 7 

d04 3 9 4  2 3 4  

eO4=a  a c + a  a c + a  a b 

e04 = a3a8C3 + a3aP5 

eg2, = 2a a 3 7  

2 

= a  a c + a  a b 

3 9 3  3 8 4  3 7 6  
- 

- 

- 
921 = (I/' )(-4"203) 

= a  a c + a  a b  e20 6 7 1  1 7 4  

e920 = (1/R) a3a7 

= (1/R )(**a3) g20 

e02 3 7 4 

3 

= a  a b 

(25 Consf.) 
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DETERMINATION OF THE CRITICAL RESULTANT END MOMENT BY USE OF THE RlTZ 
METHOD 

The classical Ritz method solution for the static buckling of  a cylindrical shell, as 

shown i n  Reference ( l ) ,  requires that an assumption be made for the shape of the buckled cy- 

linder. The following expression i s  assumed for the radial deflection: 

w = [ Al cos (s/R) + A  cos (2s/R) +A3 COS (3s/R) +A4 COS (4s/R) +A5 COS (5s/R) 2 

+ A6 cos (6s/R) ] [ sin(mrx/L) 1 (26) 

where A through A are arbitrary displacement parameters; and m i s  an arbitrary positive 

interger representing the number of buckling modes in the axial direction. The assumed 

radial deflection expression satisfies the boundary condition for the coordinates x and s. 

tnese boundary condiiisiis, fci ti simply supp~rtted she!!, are zerc def!ectim and moment at 

the ends of the cylinder and a periodicity of ZIT,  respectively, for the x and s coordinates. 

The boundary conditions represented mathematical I y are: 

1 6 

7 1  

w(x,s) = w(0,s) = w(L,s) = 0 (274 

w, (x,s) =w, (0,s) = w ,  (L,s) = o  
xx xx xx 

for the x coordinate, and: 

for the s coordinate. 

For convenience, Equation (26) wi l l  be written in the following summation form: 

w = [ An cos (ns/R) 1 [ sin (mnx/L) ] (26a) 

where the n, an interger, i s  the summing index and has the values 1 through 6. 

Substitution of Equation (26a) into Equation (23) wi l l  result in a residual force 

per unit area F, and Equation (23) can be written i n  the following form: 

F = [ sin (mrx/L) ] (G, +G2 +G3 ] (28) 



where 

cos (s/R) cos (ns/R) G~ =MaAn 

G2 =M a A n B 2n sin(s/R) sin (ns/R) (2 9) 

G3 = A  B cos (ns/R) 
n 3n 

and 

Equation (260) can be written again with a summation notation but using a dif- 

ferent index, in the following form: 

w = [ Ar cos (rs/R)] [ sin (mnx/L)] (W 

where the r, an interger, is the summing index and has the values 1 through 6. Equation 

(26b) can now be written in the form: 

w = G sin (mnx/L) (31) 
0 

where 

G = A cos (rs/R) 
0 r 
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The work done by the residual force, F, during the radial deflection of buckling 

i s  obtained from the product of Equations (28) and (31) and i s  given as follows: 

(33) 
~w = f sin 2 (mnx/L) ] [ GoGl + GoG2 + GoG3] 

The expression for Fw must be evaluated over the surface area of the cylindrical 

shell to obtain the total work W expression given as follows: 

L 2 r R  

0 0  
w = s  s Fw ds dx (34) 

Substitution of Equation (33) into (34) wi l l  result i n  the following expression: 

L 2aR m w = s  s [ sinL (max/L) ] [GoG, + GoG2 + GoG3 I ds dx 
0 0  

(35) 

Integrating Equation(35)with respect to x wi l l  give the following: 

2aR 

0 
W = (L/2) J [ G 0 1  G +GoG2 + GoG3 I ds (36) 

GoG2, and G G wi l l  give 0 3  Evaluation of the integrals of the products G G 
0 1 '  

the following: 

2aR 2 aR 

0 
(L/2) J G G1 ds = M B A A (L/2) J cos (s/R) cos (ns/R) cos (rs/R) ds 

0 0 a l n n r  

= M  B A A (aRL/4), when r = n  - + 1 (374 a l n n r  

2 BR 2 r R  
(L/2) J GoG2 ds = M B A A (L/2) J sin (s/R) (ns/R) cos (rs/R) ds 

0 a 2 n  n r 0 

= M  B A A (uRL/4), when r = n  - 1 ; (3%) a 2 n n  r 

and =-M B A A (nRL/4)/ when r =n+l  
a 2 n  n r  
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~ H R  2 rR  
s 
0 0 

GoG3 ds = Bg, An Ar (L/2) s cos (ns/R) cos (rs/R) ds 

= BQn A A (rRL/4) when r = n (374 n r  

Al l  other combinations of r and n values not specified by the r-n condition 

equations w i l l  cause the integrals to vanish. Substitution of the specified values for r and 

n into Equations (37a), (37b) and (37c); evaluation of these equations; and separation of 

terms w i l l  result in  the following general expression for the total work during the buckling 

due to the radial deflection: 

6 5 
2: 

n = l  n = l  
W = (rRL/4) [ A2 n B3n + M a *n An+l (B1 ,n + B~ ,n+l- '2,n + B2,n+1 ) I  

(38) 

where the values of n are as specified on the summation symbols. 

Equation (38) i s  minimized with respect to the arbitrary displacement parameters 

A when n again has the interger values 1 through 6. This procedure w i l l  result in  the 

following system of algebraic equations: 
n 

- aw = 0: A E +AyaEl2 = 0 
1 11 aAl 

- aw = 0 :  A Y ~  + A* %22 + MaE 23 = o  
aA2 

- aw = 0 :  AYa + A3 ii33 + A4 MaE 34 = o  
aA3 

Ma = 0 
= 0 :  A4 54 +A5E55 

aw 
aA5 
- 

M -  = 0: A5Q B65 +A6sb6 = 0 aw . -  

aA6 

(39) 

(43) 

(44) 



where: 

- 
B = 2B3*; n = 1 t o 6  
n,n 

(45) 

- - 
= B  

n,n+l n+l,n - - (Bl,n +Bl,n+l - '2,n +B2,n+1 ); n = 1 t o 5  B 

The coefficients of the A terms in Equations (39) through (44), when written 
n 

in determinate form, result in the following expression: 

- 
B1 1 

Ma '21 

0 

0 

0 

0 

Ma '12 

B22 

Ma '32 

- 

0 

0 

0 

0 

Ma '23 

B33 

Ma B43 

- 

0 

0 

0 0 

0 0 

Ma '34 0 

B44 Ma '45 

Ma '54 B55 

- 

- 

0 Ma '65 

0 

0 

0 

0 

Ma '56 

and Equations (39) through (44) can be written in the following matrix form: 

[E] [ A I  = 0 
n (47) 

Since the arbitrary displacement parameters, A 

for a l l  values of A . Therefore, evaluation of the determinant (E), which results in a sixth 

degree equation in M 

der for the particular values of p and P used in  the evaluation of the h-constants in Equation 
0 a 

are real; the determinanl, (b), must vanish 
n' 

n 
w i l l  give the critical resultant moment, M cr, of the circular cylin- 

a' a 

ng character- (24). The desired value of M cr i s  the lowest, positive, real root of the fo 

istic equation: 
a 

low 

T + T ,  M2 + T2Mt + T g d  a = 0 
0 a 
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where: 

T 0 = [ El 822 g33 EM E55 1 

= - [ E  E ' ' E 2 B E E E 2  T1 1 1  22 33 44 56 + $11 22 33 66 45 
n 

B E B 8' + E 1 1  B E E E L  4 55 66 23 
+ 51 22 55 66 34 

E E E E*] 
+ E33 44 55 66 12 

- -2-2 
B B B  T2 = "11 '22 '34 B56 + '1 1 44 23 56 "11 66 23 45 

-2 -2 - -2 -2 

-2 -2 - -2 -2 E '2 -2 
"33 E 44 12 56 + '33 66 12 45 + '55 66 12 '34 1 

(49) 

X. CONCLUSIONS 

The general instability of an orthotropic circular cylinder subjected to  an axial 

load, end moment, and uniform radial pressure has been analyzed by a technique paralleling 

the technique used by Bodner ( 1 ) .  The analysis has been successfully programmed, see Ap- 

pendix C, and the program has been run with arbitrary data. The results obtained with the 

arbitrary data could only be visually checked and were within the range of expected results. 

The program has not been used in  conjunction with experimental investigations. 

XI. RECOMMENDATIONS 
~~ ~ 

It i s  assumed that this investigation of orthotropic shells w i l l  be continued on 

an experimental basis, and that the experiments w i l l  attempt to verify and/or modify the 

existing analysis as well as refine and modify the computer program that has been written. 

The recommendations that are stated are intended as a guide for the experimental investigators. 

The deflection expression, Equation 26, should be extended to a minimum of 12 circurn- 

ferential deflection terms and possibly extended to 16 or 24 terms should computer capacity 

allow this extension. This extension wi l l  improve the accuracy of the analysis. 

The axial term of the deflection expression, the sine term, should be extended to 

contain a cosine term, that is, sin (mrx/L) +cos (mnx/L) . The axial term wi l l  then 

allow a variation of end conditions, which become significant in the short cylinder range 



and possibly the intermediate cylinder range. This modified axial term can also be used to 

induce deflections due to the pre-buckling stresses. 

An additional term can be added to the deflection expression to account for the 

init ial  imperfections of the cylinder. 

The discarded roots of the characteristic equation should be mathematically in- 

vestigated, and the meaning of the imaginary roots should be ascertained. 

The sensitivity of the program should be checked for each of the dependant 

variables, geometric and loading. Each modification of the program should be checked for 

the possible changes in  sensitivity that can be expected. 

A normalization of the final program i s  recommended which w i l l  allow a compari- 

son with other information existing in the field. 

Since stability of orthotropic shells i s  both a general and local stability problem 

the program can be extended to include the local stability problem by evaluating existing 

investigations in this field. 

Results obtained by other investigators can be checked with the program to deter- 

mine whether or not the program i s  valid. 
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APPENDIX A 

SYMBOL TABLE 

e 
A 

S 
A 

Al , A2, etc. 

al, a2, etc. 

B & B  
Inf 2n' 3n 

- 
B B  

n, n' n, n+l 

b, , b2, etc. 

cl, c2, etc. 

E 

ES 

- Cross-sectional area of the shell. 

- Surface area of the middle surface of the shell. 

- Atbitrary displacement parnmeten for the assumed deflection 
expression. 

- Constants for the stability equilibrium equation defined by 
Equation 200. 

- Constants for the stability equilibrium equation defined by 
Equation 20. 

- Genemiized constants defined by  Eqiiaii6i-i 3C. 

- Generulized constants for the stability determinant defined by 
Equation 45. 

- Constants for the stability equilibrium equation defined by 
Equation 2Cb. 

- Constants for the stability equilibrium equation defined by 
Equation 20. 

- Constants for the stability equilibrium equation defined by 
Equation 2Oa. 

- Constants for the stability equilibrium equation defined by 
Equation 20. 

- Bending rigidities for the axial , circumferential , and shear strains 
respective I y. 

- Stability determinant. 

- Constants for the Donnell differential equation defined by 
Equation 25. 

- Modulus of elasticity for the isotropic case. 

- Moduli of elasticity averaged over the axial and circumferential 
directions, respective I y . 
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- Axial, circumferential, and shear stmins, respectively, 
occurring during the buckling process, defined by Equation 1. xx' exs 

e 

etc. - Constants for the DonneII differential equation defined by 
Equation 25. e60' e42' 

- - - - Constants for the DonneII differential equation defined by 
Equation 25. e22' e04 

ef&, ef22 - Constants for the DonneII differential equation defined by 
Equation 25. 

- Constants for the DonneII differential equation defined by 
Equation 25. W40' W22' eg20 

- - Constants for the DonneII differential equation defined by 
Equation 25. 

F = P,e;idu=! fcrce per unit arm re.rl?nInIng In the she!! as a result of the 
assumed deflection expression. 

- Constants for the DonneII differential equation defined by 
Equation 25. f60' f42' f24 

G - Average shear modulus, where G = E/(1 + p ) 

- Constant defined by Equation 32. GO 

G1, G2, Gg - Constants for the residual force equation defined by Equation 29. 

etc. - Constants for the DonneII differential equation defined by 
Equation 25. '60' '42' 

- - - - Constants for the Donnell differential equation defined by Equation 25. '41' '23' '21 

h - Shell wall  thickness. 

h - Shell wa l l  thickness modified for the orthotropic case. 
eq 

hBOl h60, etc* - Constants for the Donnell differential equation defined by 
Equation 24. 

etc. - Constants for the DonneII differential equation defined by Equation 24. 
hc60' hc42' 



etc. h~41f h~23' 

k 

L 

M 
a 

0 
M 

m 

P 
Q 

P 
0 

PO 

lr R/L 

Q 

R 

S 

T , T , etc. 
0 1  

U 

U 

V 

S 
V 

V 

I 

- Constants for the Donnell differential equation defined by 
Equation 24. 

- Non-dimensional integer constant. 

- Length of cylindrical shell. 

- Modified end moment defined by M = M / r R  2 
a 0 

- Applied end moment. 

- Number of buckling modes in  the axial direction. 

- Axial, circumferential, and shear stress resultants in the shell 
just prior to buckling defined by Equation 5. 

2 - Modified axial load defined by P = Po/ rR . 
a 

- Applied axial load. 

- Applied uniform radial pressure. 

- Circular shell radius to length ratio. 

- Linear differential opemtor defined by Equation 21. 

- Radius of circular shell. 

- Circular shell radius to thickness ratio. 

- Circumferential coordinate of circular shell. 

- Constants for the characteristic equation defined by Equation 49. 

- Change in  strain energy during buckling. 

- Axial deformation of an element of the circular shell. 

- Change in  potential energy during buckling. 

- Volume of circular shell wall. 

- Circumferential deformation of an element of the circular shell. 
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w 

W 

X 

z 

6 

e 

x 

I' 

PXS' I'sx 

0 u u  
xx' ss' xs 

- - -  
u , u  u 
xx ss' xs 

- Total work due to the residual force during buckling. 

- Radial deformation of an element of the circular shell. 

- Axial coordinate of the circular shell. 

- Radial coordinate of the circular shell. 

- Extensional stiffnesses for the axial, circumferential, and shear 
strains respectively . 

- Variational symbol. 

- Coordinate angle corresponding to the circumferential coordinate, 
where 8 =s/R. 

- Constant defined by Equation 30. 

- Poison's ratio for the isotropic case. 

- Poison's ratios from the x to s and the s to x directions, 
respectively. 

- Axial, circumferential, and shear stresses, respectively, 
occurring during the buckling process. 

- Axial, circumferential, and shear stresses, respectively, in the 
circular shell just prior to buckling. 
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APPENDIX C 

COMPUTER PROGRAM 

The solution of the problem being investigated here requires that an n-th degree 

polynomial i n  M be solved for the lowest, positive, real or zero root. The degree of 

this polynomial, the characteristic equation of the stability determinant, Equation 48, i s  

equal to the maximum value used for n in the deflection expression, Equation 26a. The 

applied end moment can be plus or minus and s t i l l  have the same stability condition, there- 
2 

fore the characteristic equation can be considered as a polynomial in M and the roots of 

the Characteristic equation are determined by the cubic formula. The values of  M 
a 

then obtained by taking the square root of  the M 

a 

a 
are 

2 
value. 

0 

In the development of this problem, the total change in energy expression, 

Equation 1 1, i s  manipulated by certain mathematical operations. After each manipulation 

a new set of constants i s  obtained. These new constants are defined i n  terms of previously 

defined constants, etc., and finally all constants are defined in  terms of the extensional 

stiffnesses and bending rigidities, Equation 3, and other input variables. Therefore, the 

problem that the computer program must solve i s  an evaluation of successive sets of constants, 

and the solution of the characteristic equation for the desired root. A computer program 

type-out i s  shown i n  Appendix D,and this program i s  written i n  Fortran II for an IBM 1620 

computer. 

D, and D values, 
a 2' 2 In the investigation of an orthotropic shell, the a,, 

Equation 3, are calculated for a particular orthotropic shell using h 
eq 

then rationed to the respective isotropic shell values, a and D, which are obtained by 

using h values. These ratios are used as input variables in  the form: AlA, A2A, DlD, 

and D2D; where A l A  = a /a , etc. Similarly the input values of  L and h appear in 

the computer program as ratios in the form nR/L and R/h, respectively. 

. These values are 

In any stability problem i t  i s  necessary that the sensitivity of any or a l l  variables 

for certain ranges of the input be investigated, and that a study of  the output variable M 

variables be made. An iterative process that incruments the input variables between certain 

desired limits permits these studies. A l l  input variables can be iterated with the exception 

of E, tJ xs' PSX and R. 

a 
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The iterative process requires three input values for each of the following input 

terms: AlA, A2A, DID, D2D, R/h, mR/L, po, Po, k and m. These values are: the 

init ial value, also the minimum; the maximum value; and the increment by which the input 

variable varies between the init ial and maximum values. 

The program output i s  M vs. Po. A sample output format i s  shown in  Appen- 
a 

dix E. This sample output format i s  for arbitrary values of the input variables. 

When a constant value, non-incrumented value, of an input variable i s  used in 

a purticular computer run, the init ial value and maximum value must be the same, and the 

incrument should be an arbitrary positive number. 

- 

An increase in the number of terms in the deflection expression wil l  require a 

change in the root solving portion of the program, since the cubic formula w i l l  no longer 

provide a valid solution to the characteristic equation. 

The :ymb~!s used in  the cnmpcter program are self-explanatory except symbols 

B l l ,  812, and 813 which are the b b and b constants of Equation 20a~espectively. 

A partial l i s t  of definitions and computer program symbols i s  given in  Appendix F. 
1' 2 3 

Certain constants used in  the text of this paper do not appear in  the computer 

program. These constants have been incorporated into succeeding constants with the in- 

tent of conserving computer storage. 

The program must be precompiled wi th  format, since an overload condition 

exists on a 40K bit storage when the program i s  precompiled without format. 
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APPENDIX D 

COMPUTER PROGRAM TYPE-OUT 

C 
C 
C 
C 

C 
100 

C 

C 

C 

C 

C 

C 
10 

222 

2 2 5  

1 5  
C 

C 

2 5  

2 2 3  

C 

C 

C 
3 5  

C 

C 
4 5  

PROGRAM FOR THE S T A B I L I T Y  A N A L Y S I S  O F  AN ORTHOTROPIC CIRCULAR 

T H I S  PROGRAM IS WRITTEN I N  FORTRAN I 1  FOR AN I B M  1 6 2 0  COMPUTER. 
I N P U T  DATA ( 5  CARDS) - A L L  DATA I N  8 D I G I T  F I E L D S  
R E A D ~ O ~ ~ E , V X S I V S X , R  
VALUES FOR PRESSURE AND A X I A L  LOAD 
READ501,APO~POINC~POMAX,ABGPO,BGPO~BG~OI~BGPOM 
I N I T I A L  VALUES ( M I N I M U M )  
R E A D ~ ~ ~ ~ A R O H ~ A R P L ~ A A ~ A ~ A A ~ A I A D ~ D , A D ~ P , A D ~ D ~ A F K ~ A E M  
INCRUMENT VALUES 
R E A D 5 O l r R O H I N ~ R P L I N ~ A 1 A I N , A 2 A I N , D 1 D I N , D 2 D I N ~ E K I N C ~ E M I N C  
MAXIMUM VALUES 
R E A D ~ O ~ ~ R O H M X I % P L M X ~ A ~ A M X , D ~ D M X I D ~ D M X ~ E K M A X ~ E M M A X  
D I M E N S I O N  V ( 8 ) 9  U ( 8 ) 1 S ( 6 , 8 ) ~ R 1 ( 8 ) r B 2 ( 8 ) , B 3 ( 8 ) , X ( b l , Y ( 5 )  
REPEATING CONSTANTS 
P I = 3 . 1 4 1 5 9 3  
F l = l .  
F 2 = 2 .  
F 3 = 3 0  
F 4 = 4 0  

SHELL  WITH A X I A L  LOAD9 END MOMENT, AND R A D I A L  PRESSURE. 

P A I N C = B G P O I / ( P I * R * R )  
PAMAX=BGPOM/ (P I *R* *21  
I N I T I A L I Z I N G  STATEMENT 
FK=AEK 
I N I T I A L I Z I N G  STATEMENT 
EM= AEM 
U (  1)  = F l / R  
DO 2 2 2  N = 2 t 8  
U ( N ) = U ( l ) * * N  

00 3 3 5  I = l 9 6  
DO 2 2 5  J = l r 8  

D = I  
S ( I , J ) = D * * J  
I N I T I A L I Z I N G  STATEMENT 
RPL=ARPL 
OUTPUT STATEMENT 
P U N C H ~ ~ O ~ E ~ V X S I V S X I R T E K ~ E M  
EL=R*P I /RPL  
V f  l ) = F M * P I * R / E L  
DO 2 2 7  N = 2 r B  
V ( N ) = V ( l ) * * N  
ROH = A R OH 
OLITPCJT STATEMENT 
PUNCH512,RPL 
I N I  T I  A L I Z I I J G  STATEMENT 
D ? D = A D 2 D  
OUTPUT STATEPENT 
PUNCH5 1 5  RC)H 
I N 1  T I A L I L I N G  STATF’IENT 
D I D = A D  ID 
I N 1  T I A L  I Z  I NG STATEMEVT 
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50 A2A=AA2A 

55  A l A = A A l A  

PO=APO 

C I N I T I A L I Z I N G  STATEMENT 

C I N I T I A L I Z I N G  STATEMENT 

C OUTPUT STATEMENT 
60 P U N C H 5 1 1 ~ A l A , A 2 A , D l D ~ D 2 D  

H=R/ROH 

AX=Fl-VXS*VSX 
Q1=Fl/(E*H*(VSX/(F2*AX)-Fl/(F4*(Fl-VXS))J) 
Al=-F2*Ql*AlA*E*H/(F2*AX) 

A ~ = - F ~ * Q ~ + E * H / ! ~ O * ( F ~ + V X S ) )  
A 5 = - F 4 + ( Q l / R J * E * H * * F 3 / ( 9 6 . + ( F l + V X S ) )  
A 4 = A 3 + A S / ( F 2 * R )  
A 6 = A 2 * V X S / ( - F 2 * R )  
A 7 = Q l / R  
A9=-F2*A6/VXS 

B 1 2 = R l l + D 2 D / D l D  
R13=E*H**F3*(F2*D1D*VSX/AX+Fl/~Fl+VSX~~*R/120 
84=-A2*R/Ql+612*EK*EK/R**F4 
B5=-R*R 

B 7 = - ( R * * F 2 ) / F 2  

C CONSTANTS FOR E Q U L I B R I U M  EQUATIONS 

A Z = A I * A Z A / A l A  

~ ? ? - F ~ * R * D ~ D * E * H + + F ~ / ~ ~ ~ O * A X )  

R6=B12*F2*EK/ (R*R)  

B 8 = B l l * F 2 * V S X * E K / ( R * R )  
C l = V S X + A 2 A * E * H / ( F 2 * A X )  

C 4 = F 2 * C l / V X S  

H f l O = A l * A 4 * R l l  
0 2 = A  1*A2+A3*A4-F 1 
H62=A l+ (A5*C2+A4*813)+R l l+Q2  
H44=A3*(A5*C2+A2*B11)+B13wQZ+A1+Al*A4*Bl2 
H26=A2*A3*B13+B12*Q2 
H 0 8 = A 2 * A 3 * 6 1 2  
E 6 0 = A l * ( A 7 * B l l + A 4 * 8 7 )  
HC60=-R*Al *A4 
D 4 2 = A 1 * ( A 5 * C 4 + A 9 + C 2 + A 4 * B 6 J + A 5 * C l + A 6 * C 2 + B 8 * Q 2  
E42=A1*~A5*R+Q1*C2+A4*B5+A7*Bl3)+A3*A7*Bll+B7*Q2 
H C 4  2=-R*Q2 
D 2 4 = A 3 * ( A 5 * C 4 + A 9 * C 2 + A 2 * B E l ) + B 6 * Q 2  
E 2 4 = A 3 * ( A 5 * R + Q 1 * C 2 + A 7 * 6 1 3 + A 2 * B 7 ) + B 5 * Q 2 + A 1 * A 7 * B 1 2  
HC24=-R*A2*A3 
€ 0 6 = A 3 * ( A 2 * 6 5 + A 7 * B 1 2 )  
H q 4 1 = F Z * C 3 2  
H S 2 3 = F 4 * A 2 * A 3  
D 4 0 = A 4 * ( A 6 * C l + A l * R 4 )  
D 2 2 = C l * ( A 2 + A 6 + A 9 ) + C 4 + 0 + 9 4 + Q 2  
E 2 2 = A l + ( A 9 * R + ~ l * C 4 + A 7 * 8 6 ) + A 6 * R + Q 1 * C l + A 3 * A 7 * B 8  
ER22=Al*(Ql*R+A7*85)+A3*A7*67 
D 0 4 = A 3 * (  A9*C4+A2+84 1 
E 0 4 = A ? * ( A Q * R + Q l + C 4 + A 7 * B 6 )  

c =- E * H * * F 3 / ( 2 4 . + ( F l + V X S ) )  

C CONSTANTS FOR DONNELL EQUATION (€QUA. 2 4  AND 2 5 )  
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c 

C 

E B 0 4 = A 3 * ( Q l + R + A 7 * 6 5 )  
H 2 0 = P O * A 7 * ( A 6 * C l + A l * 6 4 )  

C OUTPUT STATEMENT 
600 PUNCH514,PO 

C I N I T I A L I Z I N G  STATEMENT 
B IGPO= ABGPO 
P A = B I G P O / ( P I + R * R )  

601  H60=A1*A4*(88+B7*PA)+E60*PO 
H42=D42+E42*PO+B7*Q2*PA 
H24=D24+€24+PO+A2*A3*B7*PA 
H 0 6 = A t * A 3 * 6 6 + E 0 6 * P O  
H40=D40+Al *A7*PO* (B8+B7* (PO+PA) )  
HC40=Q2/R-R+A l+A7+PO 
H22=D22+PO*(E22+EB22*PO+A3*A7*B7*PA) 

H04=D04+PO*(E04+EB04*PO) 
HS21=F2*A3+(A7+PO-F2*A2/R**F2) 
HC20=A3*(PO*A7/R-A2/ f?**F3)  
H 0 2 = A 3 * A 7 * B 4 * P O  

DO 2 2 7  N=1,6 

H C ~ ~ = A ~ * ( A ~ * R * P O + ~ O * A ~ / R )  

S T A B I L I T Y  DETERMINANT CONSTANTS (EQUA.45)  

B 1 ( N ) = - H C 6 0 * V ( 6 ) * U ( 3 ) - H C 4 2 * V ( 4 ) 9 U o " S ( N ~ 2 ) - H C 2 4 * V ( 2 ) + U ( 3 ) * S ( ~ , 4 )  
~ ~ ( N ) = B l ( N ) + H C 4 0 * V ( 4 ) + U o + H C 2 2 + V ( 2 ) + H C 2 2 * V ~ Z ~ * U ~ l ~ + S ~ N ~ 2 ) - H C Z O * V ~ Z ~ * R  
B 2 ( N ) = H S 2 1 + V ~ 2 ) * S ( N t l ~ - H S 4 l * V ~ 4 ~ * U ~ 2 ~ * S ( N ~ l ~ - H S 2 3 * V ~ Z ~ * U ~ 2 ~ * S ~ N ~ 3 ~  
B 3 ( N ) = H 8 0 * V ( 8 ) * U ( 5 ) + H 6 2 + V o + U ( 5 ) * S ( N 9 2 ) + H 4 4 * V ( 4 ) + U ( 5 ) * S ( N , 4 )  
B 3 ( N ) = B 3 ( N ) + H 2 6 * V ( 2 ) * U ( 5 ) * S ( N ~ 6 ) + H O B + U ( 5 ) + S ( N , 8 ) - H 6 O * V ( 6 ) + U ( 3 )  
B 3 ( N ) = B 3 ( N ) + H 4 2 * V ( 4 ) * U ( 3 ) + S ( N , 2 ) - H 2 4 + V ( 2 ) * U ( 3 ) * S ( N , 4 )  
B 3 ( N ) = B 3 ( N ) - H O 6 * U ( 3 ) + S ( N , 6 ) + H 4 O * V ( 4 ) / R + H 2 2 * V ( 2 ) ~ S ~ N ~ 2 ) / R  
B 3 ( N ) = B 3 ( N ) + H 0 4 * S ( N , 4 ) / R - H 0 2 * R * S ( N , 2 ) - - H Z O * V ( 2 ) * R  

C CONSTANTS FOR CHARACTERISTIC  EQUATION (EQUA. 491 
2 2 7  X ( N ) = F 2 * B 3 ( N )  

00 2 2 8  N=1,5 

T O = X ( l ) * X ( 2 ) * X ( 3 ) * X ( 4 ) * X ( 5 ) * X ( 6 )  
2 2 8  Y ( N ) = ( B l ( N ) + B l ( N + l ) - B 2 ( N ) + B 2 ( N + l ) ) w w 2  

T 1 = - X ( l ) * X ( 2 ) ~ ( X ( 3 ) * X ( 4 ) * Y ( 5 ) + X ( 3 ) * X ( 6 ) * Y ( 4 ) + X ( 5 ) + X ( 6 ) * Y ( 3 ) )  
T 1 = T 1 - X ( 4 ) * X ( 5 ) * X ( 6 ) * ( X ( l ) * Y ( 2 ) + X ( 3 ) * Y ( l ) )  
T Z = X ( l ) * ( Y ( 5 1 * ( X ( Z ) * Y ( 3 ) + X ( 4 ) + Y ( 2 )  ) + X ( 6 ) * Y ( 2 ) * Y ( 4 ) )  
T 2 = T 2 + Y ( l ) * ( X ( 3 ) * ( X ( 4 ) * Y ( 5 1 + X ( 6 ) * Y ( 4 )  ) + X ( 5 ) + X ( 6 ) * Y ( 3 )  1 
T 3 = - Y ( l ) + Y ( 3 ) * Y ( 5 )  
S O L U T I O N  O F  CHARACTERISTIC  EQUATION (EQUA. 4 8 )  
Q = ( F 3 + T l / T 3 - ( T 2 / T 3 ) * * 2  )IF3 
T = ( F 2 + ( T 2 / T 3 ) * * 3  - 9 o 3 T l * T 2 / T 3 * * 2  + 2 7 o * T O / T 3 ) / 2 7 o  
Z = T + * 2  / F 4 + Q * * 3  1 2 7 0  
I F ( Z )  2 S 0 9 2 6 0 9 2 7 0  

2 7 0  R I G A = ( Z * * O ~ - T / F ~ ) * * ( F ~ / F ~ )  
B I G B = ( - ( Z + + . S ) - T / F 2 ) + ' ( F 1 / F 3 )  
E M A 2 = B I G A + B I G B  
IF( E M A 2 ) 3 9 0 9 4 0 0 , 4 0 0  

E M A 2 1 = F 2 * B I G A  
EMA22=-B IGA 
I F ( E M A 2 1 ) 2 6 1 , 2 6 2 , 2 6 2  

2 6 0  R I G A = ( - T / F 2 ) * * ( F l / F 3 )  

2 6 1  EMA2=EMA22 
GO T O  4 0 0  
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2 6 2  EMA2=EMA21 
GO TO 400 

2 5 0  T H E T A = A T A N F ( ( - ( Q * * 3  / 2 7 * ) - ( T * * 2  / F 4 ) ) * * . 5 / ( - T / F 2 ) )  
Q 3 = F Z * ( - Q / F 3 ) * * . 5  
EMA21=Q3*COSF(THETA/F3)  
EMA22=Q3*COSF(THETA/F3+F2*P I /F3 )  
EMA23=Q3*COSF(THETA/F3+F4+PI/F3) 
I F ( E M A 2 1 ) 2 5 1 , 2 5 2 r 2 5 2  

2 5 1  I F ( E M A 2 2 1 2 5 8 9 2 5 9 r 2 5 9  
2 5 8  I F ( E M A 2 3 ) 3 9 0 , 2 8 2 , 2 8 2  
2 8 2  EMA2=EMA23 

GO TO 400 

1 F ( EMA 2 3 1 2 8 0 9 2 8 1 9 28.1 

GO TO 400 

GO TO 4 0 0  

2 5 9  I F ( E M A 2 2 - E M A 2 3 ) 2 8 0 , 2 8 0 9 2 8 4  
2 84 
280 EMA2=EMA22 

2 8 1  EMA2=EYA23 

2 5 2  i F ( E M A 2 1 - - E M A 2 2 ) 2 5 3 * 2 5 3 , 2 8 5  

2 5 7  EEMA2=EMA21 

2 5 4  EEMA2=EMA22 

2 8 5  i F { ; 253 + 2 5 4  + 25% 

GO TO 2 5 5  

2 5 5  I F ( E E M A 2 - € M A 2 3 ) 2 5 6 r 2 5 6 , 2 8 6  
2 8 6  I F ( E M A 2 3 ) 2 5 6 , 2 5 7 , 2 5 7  
2 5 7  EMA2=EMA23 

2 5 6  FMAZ=EFMA? 
GO TO 4 0 0  

400 EMA=EMA2**.5 
EMO=EMA*PI*R**F2 
PUNCH513,BIGPOtEMO 
GO TO 3 9 1  

3 9 0  PUNCH516,BIGPO 
C B E G I N  CYCLING OF INPUT DATA 

7 9 1  PA=PA+PAINC 
R TGPO= B IGPO+BGPO I 
I F ( P A - P A M A X ) 6 0 1 , 6 0 1 r 2 0 1  

I F ( P O - P O M A X ) 6 0 0 , 6 0 0 , 2 0 2  

I F ( A l A - A l A M X ) 6 0 , 6 0 * 2 0 3  

I F ( A 2 A - A 2 A M X ) 5 5 , 5 5 r 2 0 4  

I F ( D l D - D l D M X ) 5 0 , 5 0 , 2 0 5  

I F ( D 2 D - D 2 D M X ) 4 5 * 4 5 , 2 0 6  

I F ( R O H - R O H M X ) 3 5 t 3 5 , 2 0 7  

I F ( R P L - R P L M X ) 2 5 * 2 5 r 2 0 8  

T F ( E M - E M ~ A X ) 1 5 , 1 5 r 2 0 9  

2 0 1  PO=PO+POINC 

2 0 2  A l A = A l A + A l A I N  

2 0 3  A 2 A = A 2 A + A 2 A I N  

2 0 4  D l D = D l D + D l D I N  

2 0 5  DZD=DZD+DZDIN 

206 ROH=ROH+ROHIN 

207 R P L = R P L + R P L I N  

2 0 8  EM=EM+EMINC 

2 0 9  EK=EK+EKINC 



I F ( E K - E K M A X ) ~ O , I O I ~ ~ O  
C OUTPUT STATEMENT 

2 1 0  PRINT 1 0 1  
101 FORMAT(13HLOAD NEW DATA) 
5 0  1 FORMAT 4 8F8 e 0  1 
5 1 0  FORMAT(20HE,VXS,VSX,RAD,K,M = rE8.2,2F5.2,F8.2,2F5.I)  
5 1 1  F O R M A T ( ~ X ~ ~ H A ~ / A S A ~ / A , D ~ / D , D ~ / D * D ~ / D  = r F 6 . 2 9 3 F 7 . 2 J  
5 1 2  FORMAT(ZX2OHPI X RAD / LENGTH = 9F6.3)  
5 1 3  FORMAT(lOX11HBIGPO~MO = *E9*2,3XE13.6J 
5 1 4  FORMAT(8XllHPRESSURE = ,F8.2J 
5 1 5  FORMAT(4XlBHRAD / THICKNESS = 9F9.2)  
5 1 6  FORMAT~lOXl1HBIGPO~MO = rE9.2,6X4HIMAG) 

GO TO 100 
END 
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APPENDIX E 

COMPUTER PROGRAM OUTPUT FORMAT 

INPUT DATA FOR THE FOLLOWING OUT-PUT FORMAT 

3OOOOOOOo3 0 3  10. 

1 5 0  1 5 0  3 0 0  00 50000 100000 

1 2 0 0 0  6 .  1. 1. 1. 1 .  1 0  1. 

400. 20 1. 1. 1. 1. 1 0  1. 

1600. 80 1. 1. 1. 1 0  1. 10 

EIVXS,VSX,RAD,K,M = 030E+08  030 0 3 0  10000 100 1.0 
PI X RAD / LENGTH = 6.000 

RAD / THICKNESS = 1200.00 
Al /A,AZ/A,Dl /D,D2/0 = 1000 1000 1.00 1000 

PRESSURE = 15.00 
BIGP0,MO = 000E-99 4.145080E+08 
RIGP0,YO = 5.00€+03 4.145072E+08 
BIGP0,MO = 1o00E+04  4.14506OE+08 

PRESSURE = 30000 
RIGPOIMO = 000E-99 4.145147E+08 
RIGPOIMO = 5 0 0 0 E + 0 3  4 .145134€+08  
RIGP@*Y@ = 1o00E+04 4.145121€+08 

RAD / THICKNESS = 16b0.00 
A ~ / A I A ~ / A * D ~ / D , D Z / D  = 1000 1.00 1.00 1000 

PRESSURE = 14.00 
RIGPOIMO = o00E-99 3 .108863€+08  
RIGP0,YO = 5 0 0 0 E + 0 3  3.1088546+08 
RIGPO,MO = 1.00€+04 3.108838E+08 

PRESSURE = 30.00 
BIGP0,MO = 000E-99 3.108928€+08 
RIGPOqMO = 5 0 0 0 E + 0 3  3 o 1 0 8 9 1 6 € + 0 8  
RIGP0,MO = 1 0 0 0 E + 0 4  3.108903E+08 

P I  X RAD / LENGTH = 8.000 
R A D  / THICKNESS = 1 2 0 0 0 0 0  

A l / A ~ A Z / A ~ P I / D ~ C ' ? / D  = 1.00 1.00 1.00 1.00 
PRFSSURE = 15.00 

RIGP0,YO = .00E-99 2 0 3 4 4 6 5 4 € + 0 8  
BIGPO,MO = 5.00E+03 2 .344708€+08  
HIGPOqMO = 1000E+04  2 .344760€+08  

PRESSURE = 30.00 
BIGPO*MO = .00E-99 2 .344727€+08  
BIGPOqMO = 5.00€+03 2 . 3 4 4 7 7 9 € + 0 8  
R T G P O I Y O  = 1,00€+04 2 .344833€+08  



RAD / T H I C K N E S S  = 1 6 O O o O O  
A I / A I A ~ / A I D I / D I D Z / D  = 1000 1000 1000 1000 

PRESSURE = 15 .00  
RIGP0,MO 000E-99 10758522E+08  
B I G P O s M O  = 5 0 0 0 E + 0 3  10758575E+08  
RIGP0,YO = 1000E+04 10758626E+08  

BIGPOgMO = 000E-99 1 758593€+08  
PRESSURE = 3 0 0 0 0  

BIGP0,MO = 5 0 0 0 E + 0 3  1 . '758646€+08 
BIGPOIMO = 1000E+04 10758698E+08 



APPENDIX F 

PARTIAL LIST OF DEFINITIONS 

OF COMPUTER PROGRAM SYMBOLS 

E 

V X S  Poissoin's ratio for the x to s direction. 

vsx Poisson's ratio fbr the s to x direction. 

R Radius of the shell. 

AlA 

A2A = a P  

D1D 

i32D 

Modulus of elasticity for isotropic case. 

- - al/a ; where a = Eh/2 (1 - p p ) xs sx 

= D,/D ; where D = ~ h ~ / 2 4  (1 - p psx) Aa 

= 

ROH = R / h  
RPL =.R/L 

EK = k  

EM = m  

PO 

BIGPO = P axial load 

= p radial pressure 

0 * 

0 

= P = Po/nRL: 
a 

?A 

E M 0  
€MA 

AAlA 

AA2A 

ADlD 

AD2D 

AROH 

ARPL 

AE K 

= Mo endmoment 

= Mo/ n R  

- initial value of A1A (minimum) 

- initial value of  A2A (minimum) 

- initial value of DID (minimum) 

- initial value of 020 (minimum) 

- initial value of ROH (minimum) 

- initial value of RPL (minimum) 

- init ial value of EK (minimum) 

2 
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AEM 

APO 

ABGPO 

A I  AMX 

A2AMX 

DlDMX 

DZDMX 

ROHMX 

RPLMX 

EKMAX 

EMMAX 
nr\& A A v r UIVIHA 

n f i n n r r  v v r w m  

A l A l N  

A2AIN 

D l D l N  

D2DIN 

ROHIN 

RPLIN 

E KI NC 

EMINC 

POI NC 

BGPOl 

EL 

H 

- init ial value of EM (minimum) 

- init ial value of PO (minimum) 

- init ial value of BIGPO (minimum) 

- final value of A l A  (maximum) 

- final value of A2A (maximum) 

- final value of D1D (maximum) 

- final value of 020  (maximum) 

- final value o f  ROH (maximum) 

- final value of RPL (maximum) 

- final valueof EK (maximum) 

- final value of EM (maximum) 

vc;!c= of D n  /-mw:-.n-\ 
I v \simana#tiwiimI - 

I?- I ..-I.., - I l I l G l  V U l U C  t f  BIGPS (iiiexlmiim) 

- incrumentof A l A  

- incrumentof A2A 

- incrument of DID 

- incrument of D2D 

- incrumentof ROH 

- incrument of RPL 

- incrumentof EK 

- incrument of EM 

- incrument of PO 

- incrument of BIGPO 

Length of shell 

Thickness of the shell 


